
Adaptive Cache Compression in Gem5

Kumar Alabhya
Department of Electrical

and Computer Engineering
Purdue University

West Lafayette, USA
kalabhya@purdue.edu

Vivek Mahesh Nair
Department of Electrical

and Computer Engineering
Purdue University

West Lafayette, USA
nair185@purdue.edu

Yatharth Agarwal
Department of Electrical

and Computer Engineering
Purdue University

West Lafayette, USA
agarw414@purdue.edu

Abstract—Modern Processors rely heavily on caches to mitigate
the memory bottleneck. However, the small size of these caches
often proves fatal for data-intensive workloads. The fast access
and area requirements put a size limit on the caches, which
can be incorporated into SoCs, making it a big problem. In
this report, we evaluate adaptive compression caches in the
Gem5 simulator. We implement a Variable Segment Cache,
which, combined with data compression, provides double the
capacity compared to a normal uncompressed cache. Further,
to avoid decompression penalization on data sparse programs,
we implement an adaptation algorithm that stores data in
compressed form only if there is a benefit. For our performance
analysis we ran the simulation on SPEC 2k17 benchmarks. We
belive that the Adaptive Cache compression Policy is ineffective
for modern workloads. The code for our implementation can
be found at: https://github.com/yathAg/gem5Project

1. Introduction

The steep increase in the frequency of CPUs and the
memory not being able to cope with this increase have made
the memory bottleneck a cumbersome issue to be solved.
Caches play a pivotal role in overcoming this bottleneck up
to some extent. The caches must be faster than the main
memory and are maintained much smaller than the main
memory.

In today’s world, Machine Learning and Artificial Intel-
ligence dominate major use cases, dramatically increasing
memory access. This has led to increasing misses in the
cache due to their small sizes. Hence, there is a requirement
for larger caches to support such data-intensive applications.
So, on the one hand, we need faster data access, but on the
other, we need larger cache sizes, creating a paradox. To
resolve this paradox, we analyze adaptive cache compression
[1] for the data stored in the cache for modern workloads.
Since more data can be stored in a given cache size in
a compressed format than in an uncompressed form, it
allows us to improve the capacity of the cache without
compromising the access time.
Modern processors use two or more levels of cache mem-
ories to bridge the rising disparity between processor and

memory speeds. Hence, the next question is determining
in which cache the adaptive compression should be im-
plemented. Since compression comes with a decompression
penalty and first-level cache (L1) caches are highly hit time
critical, the L1 cache stores only uncompressed data [2]. The
second level cache, or the L2 cache, needs a lower miss rate
and would effectively benefit from compression logic.

Compression of block works well for memory-intensive
workloads. However, we are penalized for workloads where
memory access is not dominant due to the high decom-
pression penalty. Therefore, a system that dynamically com-
presses data based on the workload requirements improves
the performance of such workloads.

The remaining of the report is organized as follows:

• Section II discusses GEM5 Implementation Details
of the Architecture

• Section III discusses the Evaluation methodologies
and benchmarks.

• Section IV provides the results of miss rates and
performance

• Section V Shares our conclusion and scope of further
improvement

2. GEM5 Implementation

This project is designed to develop a cache system
capable of storing data in compressed or uncompressed for-
mats, depending on the cost-benefit analysis of compression.
The implementation is divided into three main components,
which are described in Figure 1

• Compression logic involves ensuring proper com-
pression using FPC (Frequent Pattern Compression).

• Implementation of a decoupled variable segment
cache to support compressed data.

• Implementation of the global predictor algorithm for
Adaptive Compression.

2.1. Frequent Pattern Compression

The compression algorithm implemented for the L2
cache is Frequent Pattern Compression (FPC) [3]. FPC



Figure 1: Structure of the Hardware implemented

compresses individual cache lines on a word-by-word basis
by storing common word patterns in a compressed format
accompanied by an appropriate prefix. The algorithm can
be implemented on hardware with very little extra hardware
and reasonable run-time latency, which makes it ideal for L2
cache compression. Gem5 already has the FPC compressor
implemented and serves as the base for our project.

2.2. Decoupled variable segment Cache

For Adaptive Cache Compression, we implement a
structure called the decoupled variable segment cache. The
Decoupled Variable Segment Cache provides a cache struc-
ture that can be used to derive performance benefits out of
the data compression through FPC. The main idea is that
the data are stored in a long array consisting of segments,
each 8 bytes wide. The uncompressed data block is eight
segments wide (considering the cache line to be 64B long),
and FPC can compress this data to anywhere between 1 and
7 segments (8 to 56 bytes). For an 8-way set associative
tag structure, this cache consists of 32 segments and thus
can hold a maximum of 4 uncompressed blocks and up
to 8 compressed blocks (limited by tag structure). Hence,
we obtain a two-time data storage compared to a normal
uncompressed cache.

2.2.1. Decoupled Variable Segment Cache : GEM5 Im-
plementation

We use the in-built base set associative tags for the
GEM5 implementation of the cache mentioned above. We
instantiate a n-way associative cache, where n is the max-
imum number of compressed lines that can be stored in a
set (in our case, n=8). During the allocate phase the data
is compressed by the FPC compressor. We compute the
number of free segments by finding the sum of the sizes
of all valid lines in the set. If the number of free segments
(out of a total of 32) available is sufficient for the new block,
it is allocated, and if not, we need to evict the required-sized
block(s) to make space for the new block. If all eight tags are
occupied, eviction will be required even if there is enough
space.

To achieve the above, we implement three major modi-
fications in GEM5:

1) Modify the cache block to hold compressed blocks
and store its size and decompression latency,

2) A new getvictim function to handle the evicts for
the new cache structure,

3) A new updateCompressionData function for write-
Backs.

Cache Block Modifications: The first step is set-
ting up the required attributes for a normal cache block.
We implement a variable in the CacheBlk class for
size and decompression latency. Further, we implement a
function to allocate these values, namely set/getSize and
set/getDecompressionLatency. These functions are called
from the base.cc of the cache, which transfers the required
values from the compressor to CacheBlk.

Algorithm 1: findVictimVariableSegment
entries← getPossibleEntries(addr)
victim ← nullptr
curr blk ← nullptr
valid entries ← empty list
evict blks ← empty list
set size ← 0
for each entry in entries do

if forUpdation and entry.matchTag(addr) then
curr blk ← entry

else if entry is valid then
valid entries.append(entry)
set size ← set size + entry.size

else
victim ← entry

diff size ← max set size - set size
if diff size > 0 and !victim then

victim ← LRU(valid entries)
evict blks.append(victim)
diff size = diff size - victim.size

if diff size > 0 then
new valid entries ← empty list
for each entry in valid entries do

if entry.size >= diff size and entry !=
victim then

new valid entries.append(entry)

victim ← LRU(new valid entries)
evict blks.append(victim)

if forUpdation then
return curr blk

else
return victim

getVictim implementation We implement a replace-
ment unit that can evict the correct block based on the size
requirement and victim block sizes. Hence, we approach
the problem by creating a replacement function called the
getVictimVariableSegment. The first part of the logic checks



if the write is for updating an existing block’s data or
allocating the block to new data. If the data is being updated,
the current block is returned as a victim. We calculate the
free size available in the cache for data allocation and check
if a block can be inserted in the given space. The pseudo-
code for this

If all the segments hold valid blocks, we must make
an eviction irrespective of available size. If there is enough
space and at least one invalid block, we return that invalid
block as the victim. If we do not have enough space, we
evict the Least Recently Used block, and then calculate the
free size. If this meets the size requirement, we exit the
function; otherwise, we search for the least recently used
block whose eviction provides us enough space for block
allocation and to evict this block. At the end of the function,
one of the evicted blocks is returned as the victim. The
complete logic is demonstrated by the logic below.

Algorithm 2: UpdateCompression
if compressor predictor then

compdata← compress(data)
compression size ← comp data
→ getSizeBits()

compression size ← (compression size + 63)
& !63

if compression size < blkSize then
decompression lat gets Cycles(5)

else
Compression size gets blkSize

prev size ← blk size is data expansion ← false
is data contraction ← false

if prev size < compression size then
is data expansion ← true

prev size > compression size is data contraction
← true
victim ← blk evict blks ← empty vector
if is data expansion then

victim ← findVictimVariableSeg-
ment(regenerateBlkAddr(blk)
compression size, evict blks, true)

if !victim then
return false

if !handleEvictions(evict blks, writebacks) then
return false

setSizeBits(blk, compression size)
setDecompressionLatency(decompression lat)
return true

UpdateCompression implementaion Update compres-
sion data is required during writebacks when the block is
already present in L2. After compressing the updated data,
the compressed size can increase, decrease, or stay the same.
In case of the compressed size decreases or stays the same,
we can simply write the new data and update the compressed
size in tags. But in case of an expansion, we need to ensure
that there’s enough free space available for the expansion,
if not, blocks are evicted.

2.3. The Adaptive Logic: Global Predictor

The Predictor logic classifies each memory access into
five different classes, namely, unpenalized hit, penalized hit,
avoided miss, avoidable miss, and unavoidable miss. Below,
we discuss these transactions in detail.

Algorithm 3: Pseudo-code for the Global Predic-
tion Algorithm

Data: int hit, rank, setSize, i; Block *blk; Packet
*pkt; Tags *tags; int global predictor;

if blk is hit then
hit ← 1;
rank ← getLRURank(Addr, blk);

else
setSize ← getSetSize(Addr());

if hit and blk→ isCompressed and rank ≤ 4 then
global predictor ← global predictor -
decompression latency;

else if hit and blk→ isCompressed and rank > 4
then

global predictor ← global predictor +
dram access time;

else if not hit and setSize < max size then
global predictor ← global predictor +
dram access time;

if global predictor < 0 then
compress next ← false;

else
compress next ← true;

2.3.1. Unpenalized Hit
Memory accesses are regarded as an unpenalized hit

when three conditions are met. First, the block is a hit.
Second, the block is stored uncompressed in the cache, and
third, the most recently used (MRU) rank derived from the
LRU stack is less than or equal to associativity/2. In this
situation, we do not update the global predictor because such
transactions contribute no extra decompression latency and
do not benefit from compression since it would have been
a hit even in a regular uncompressed cache.

2.3.2. Penalized Hit
These accesses are similar to Unpenalized hits in that

they are hits with an MRU rank less than or equal
to associativity/2. They are, nevertheless, compressed
blocks. Because they have a high MRU rank, they would
have been a hit in the usual uncompressed cache, so com-
pression provides no benefit. Additional cycles, on the other
hand, are used to decompress the block on access. As a
result, our logic penalized the performance. We deduct the
decompression cycle from the Global Predictor variable in
such cases.



Figure 2: Miss Rates for Compressed Caches Normalized to Never Policy

Figure 3: Performance of Compressed Caches Nomalized to Never Policy

2.3.3. Avoided Miss
This type of access is likewise considered a hit and is

saved in a compressed manner. However, the MRU rank
is greater than the associativity/2 value in this situation.
Therefore, we profited from compression because it would
have been a miss in the conventional cache. As a result, we
added the DRAM access time that was saved to the global
predictor.

2.3.4. Avoidable Miss
In the event of a miss, if there is still capacity inside

the set to store the block in a compressed format, i.e., there
is at least one free segment available in the set, it means
if compression had been prioritized, this type of miss may
have been prevented. As a result, in this scenario, we update
the global predictor by adding the DRAM access time and
prioritizing compression.

2.3.5. Unavoidable Miss
This is the final case of a missed access; however, the

cache is too full to include this block even in its compressed
form. As a result, it could not be avoided in any way, and
hence, we do not penalize or promote the global predictor
in this scenario.

The global predictor will have a negative value, ensuring
that the new block allocated is not compressed. On the
other hand, if there are a significant number of avoided or
avoidable misses, the global predictor will have a positive
value, making the new block allocated in a compressed
format.

3. Evaluation of Adaptive Compression

We present an evaluation of adaptive compression on
a dynamically scheduled out-of-order processor using full-
system simulation of a subset of the SPECcpu2k17 bench-
marks.

TABLE 1: System Parameters

Processor BaseO3CPU, x86
L1 Cache configuration 64kB, 2-way assoc., 64B lines
L2 Cache configuration 256kB, 256B sets (32 segments)

3.1. Selected Benchmarks

In our comprehensive system performance evaluation,
we conducted benchmark tests to assess the effectiveness
of our implementation relative to the spec2017 benchmarks,
which are widely recognized as representative of modern
workloads. This evaluation included four integers(gcc, mcf,
x264, xalancbmk) and five floating-point benchmarks (fo-
tonik3d, wrf, imagick, cactuBSSN, exchange2). These care-
fully selected benchmarks provided a robust framework for
evaluating and analyzing the computational capabilities of
our implementation in the context of contemporary comput-
ing tasks. We fast forward each benchmark for 10 million in-
structions and simulate the following 10 million instructions.
For better results, it is recommended to simulate for larger
workloads. However, owing to the project’s time constraints,
we could not achieve the same.



4. Evaluation of Adaptive Compression

We evaluate the performance of adaptive compression to
two extreme policies: Never and Always. Never represents
a conventional 4-way set associative L2 cache design in
which data is never compressed. The always scheme simu-
lates a decoupled variable-segment cache but always stores
compressed data. The proposed adaptive policy compresses
the data only when the benefits outweigh the compression
overheads.

4.1. Miss Rates for Compressed Caches

Compression to increase effective cache capacity should
decrease the L2 miss rate. Figure 2 presents the average
miss rates for the benchmarks. The results are normalized
to never compress to focus on the benefit of compression.
The differences concerning never compress have also been
scaled by a factor of 10 to make them more apparent in
the plot. Both Always and Adaptive have lower or equal
miss rates when compared to Never. However, the differ-
ences were too small to have any practical benefits. We
performed an analysis and found out that the differences
in misrates in uncompressed cases after doubling cache ca-
pacity and associativity (i.e., the best case that compression
can achieve) were not much to begin with. Therefore, the
lack of improvement owes more to the lack of sensitivity
of these benchmarks to L2 size than to the effectiveness
of compression logic itself. Another flaw that we believe
exists in the adaptive compression logic is that it doesn’t
consider compulsory misses. In our initial runs, we found
out the predictor was always biased towards compression.
This is because it treated most of the compulsory misses
as avoidable misses, thus biasing itself towards prediction.
And given the huge difference in memory access latency
and decompression latency, no amount of penalized hits was
enough to bias the predictor towards no compression. To
overcome this, we initially biased the predictor towards no
compression.

4.2. Performance

The performance (total cycles) is plotted in Figure 3.
In benchmarks with relatively more significant differences
between always compress and never compress miss-rates,
such as gcc, the performance of always compress is the
best. However, always-compress performs worse than never-
compress in benchmarks with relatively minor differences
in miss rates, such as cactuBSSN. However, adaptive com-
pression can improve performance slightly. But, similar to
miss rates, these differences were too low to have practical
benefits. Another reason for the low differences is the low
number of total instructions for which the simulation was
implemented.

5. Conclusion

We successfully implemented the Adaptive Cache Com-
pression policy in GEM5. Further, we could use the decou-

pled variable segment cache and FPC compression, repli-
cating the reference paper. We also implemented the global
predictor to make the compression adaptive based on the
workload. To evaluate the performance of our architecture,
we chose nine benchmarks from SPEC2k17. We found that
the difference between miss rates and performances for all
these benchmarks was insignificant. Therefore, we believe
the cache architecture from the reference paper might not
be effective for current workloads. Furthermore, we have
provided our analysis of why we believe the differences in
miss rates are too small.

Acknowledgment

We want to express our sincere gratitude to Profes-
sor Mithuna Thottethodi for his invaluable guidance and
insightful input throughout this project. His expertise and
mentorship have been instrumental in shaping the direction
of this work.

We extend our heartfelt thanks to our Teaching Assistant,
Ceasar, for his unwavering support and patience in clarifying
doubts during various project stages. His dedication has
contributed significantly to the successful completion of this
project.

References

[1] A. Alameldeen and D. Wood, “Adaptive cache compression for high-
performance processors,” pp. 212–223, 2004.

[2] J. Yang, Y. Zhang, and R. Gupta, “Frequent value compression in
data caches,” Proceedings of the 33rd Annual ACM/IEEE International
Symposium on Microarchitecture, 2000.

[3] A. Alameldeen and D. Wood, “Frequent pattern compression: A
significance-based compression scheme for l2 caches,” 01 2004.


