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Abstract—The conventional Von Neumann architecture,
marked by the separation of processing and memory units,
grapples with the intrinsic challenge of data transfer bottle-
necks between these components. In response, Computing-in-
Memory (CiM) architectures emerge as a solution, conducting
computations within the memory to alleviate data movement
constraints and amplify energy efficiency. This project introduces
an optimized 8T-SRAM-based CiM architecture tailored for
efficient 8-bit word addition operations. Employing concurrent
activation of multiple Read Word Lines (RWLs), the architecture
facilitates parallel bitwise computations. Voltage sense amplifiers
strategically positioned within the design enhance precision
by amplifying subtle voltage differences, ensuring swift and
accurate addition operations. The initiative encompasses the
comprehensive design, implementation, and evaluation phases,
covering memory write and read functionalities, 8-bit addition
computations, layout efficiency metrics, and simulation outcomes
using RC extracted values. The successful showcasing of the
proposed CiM architecture validates its operational efficacy and
charts a course for advancements in in-memory computing,
specifically in 8-bit word addition, offering promising prospects
for applications in high-throughput computing scenarios.

Index Terms—8T-SRAM, Computing-in-Memory, Sense Am-
plifier, Compute Module.

I. INTRODUCTION

THE rapid evolution of technology has led to the emergence
of transformative applications, most notably in the realm

of artificial intelligence (AI). The proliferation of AI applica-
tions has propelled us into the era of ’Big Data,’ where the
storage and processing of vast amounts of data have become
imperative. To meet the demands of this data-intensive era, the
efficiency of hardware architectures is paramount.

A fundamental challenge in contemporary von Neumann
architectures lies in the separation of the memory unit and
processing unit. This segregation results in a high volume
of processor-memory transactions, limiting performance and
energy consumption. As the demand for computational power
continues to surge, seeking innovative solutions that break
through these bottlenecks becomes imperative.

Addressing this challenge, computing-in-memory (CiM)
emerges as a promising paradigm, offering an elegant solution

by integrating computation capabilities within the memory
subsystem. This integration aims to minimize the need for
frequent data transfers between the memory and processing
units, thereby enhancing overall system performance and re-
ducing energy consumption.

In this research project, our focus revolves around designing
and implementing an 8T SRAM-based computing-in-memory
architecture. The primary objective is to create a memory
system beyond conventional storage functions, incorporating
the ability to perform in-memory addition of two 8-bit
numbers. By seamlessly integrating computation into the
memory macro, we endeavor to contribute to developing more
efficient and performant computing architectures capable of
addressing the challenges posed by the era of ’Big Data.

Our report is organized as follows -
• We discuss the design of the SRAM Circuit in Section

II, the Sense Amplifier in Section III, and the Compute
Module in Section IV.

• Section V presents the Layout for various sub-blocks and
outlines critical design considerations for the project.

• Evaluations and Results are presented in Section VI and
the Methodology for Parallel Computing is in Section
VII.

• Section VIII discusses possible Optimizations within our
implementation.

• Lastly, our research concludes with a comparative anal-
ysis of In-Memory Computing with Von Neumann ar-
chitecture and Near-Memory Computing in Section IX.
Subsequently, Section X outlines the individual contribu-
tions of each team member, and Section XI expresses our
gratitude through acknowledgments.

II. DESIGN OF SRAM ARRAY

A. Writing data to the 8T SRAM

The 8T SRAM employs voltage states on storage nodes
Q and QB to store binary data. During the writing process,
the WBL and WBLB signals are set to appropriate levels
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Fig. 1: The schematic illustrates the configuration of a typical 8T-SRAM bit-cell featuring separate ports for reading and writing
operations.

(0 and VDD, respectively, for writing Q=’0’; and VDD and
0, respectively, for writing Q=’1’). Subsequently, WWL is
activated, driven to VDD, and the values of Q and QB are
determined by the WBL and WBLB signals.

Fig. 1 depicts the operation of the 8T SRAM. A compre-
hensive overview of the voltage levels and their corresponding
output values during the write operation is presented in Table
I.

WBL WBLB WWL Q QB

0 VDD 1 0 1
VDD 0 1 1 0

0 VDD 0 Q QB

VDD 0 0 Q QB

TABLE I: Truth Table for the Write Operation

B. Pre-charge Circuit
In the Precharge Circuit, a PMOS transistor is employed,

with its drain and source terminals connected to the supply
voltage (VDD) and the Read Bit line (RBL), respectively. The
purpose of this circuit is to precharge the RBL to the VDD level
in preparation for a read operation. This pre-charging action
is initiated by applying a low signal to the gate of the PMOS,
lasting for a duration of 200 ps.

The PMOS transistor has been designed with a total width
of 600 nm, a size determined to accommodate the substantial
capacitance of the RBL. This sizing strategy serves a dual
purpose: first, it enhances the overall drivability of the circuit,
ensuring efficient operation, and second, it reduces the time
required to precharge the RBL, thereby optimizing the speed
of the pre-charging process.

C. Reading data from the 8T SRAM
For reading, the read port (Fig. 1) is utilized to sense the

data on RBL by asserting RWL. If Q=’0’ (QB =’1’), VQB is
set to VDD, and the read port conducts with both transistors in

the ON state. This discharges RBL from its pre-charged value
of VDD, resulting in VRBL = VDD-∆. Conversely, if Q=’1’ (QB

=’0’), VQB is set to 0, preventing the read port from conducting
as the bottom transistor is OFF. This maintains RBL at its pre-
charged value of VDD, leading to VRBL = VDD. A voltage-based
sense amplifier can interpret the sensed data discussed in the
next section.

III. DESIGN OF THE SENSE AMPLIFIER

The voltage-based sense amplifier utilizes p-type transistors
(P3 and P4) (Fig. 2) configured with their source terminals
directly connected to the Read Bit Line (RBL) and the
Reference Voltage (VREF), respectively. In this configuration,
the gate terminals of P3 and P4 are interconnected to nodes
X and X , creating a differential setup. Initiated with the
Sense Enable (SEN) signal at zero, P3 and P4 remain inactive
initially. The voltages on nodes X and X are contingent upon
the RBL voltage VDD and the Reference Voltage (VDD - ∆/2).
This biased condition establishes a voltage difference between
nodes X and X , setting the stage for differential sensing.

Fig. 2: Voltage-based Sense Amplifier

Upon the transition of the Sense Enable (SEN) signal from
zero to VDD, P3 and P4 become active. The transistor with the
higher gate voltage, corresponding to the higher voltage node,
dominates, discharging the bit line (X or X) more rapidly. This
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discharge initiates a cascading effect, leading to one of the
inverters dominating and driving the sense amplifier outputs,
namely OR OUT/AND OUT and OR OUTB/AND OUTB.
The resulting outputs represent complementary values based
on the differential input and the race condition between the
two transistors.

This voltage-based sense amplifier topology offers advan-
tages in simplicity and efficient handling. Its direct connection
of source terminals to voltages eliminates the need for cross-
coupled inverters, simplifying the overall sensing process. The
configuration naturally handles pre-charging without explicit
precharge steps, contributing to the efficiency of the voltage-
based sense amplifier, particularly in scenarios where simplic-
ity and efficient handling of specific memory configurations,
such as 8T SRAM, are paramount.

Fig. 3: Reference Voltages for the Sense Amplifier

Fig. 4: (a) Bitwise OR Sensing Scheme. (b) Bitwise AND
Sensing Scheme

In Figure 2, M2-M5 and M3-M6 create the inverters respon-
sible for converting the differential voltage on the bit lines into
a full swing at the output. The bit lines in this design facilitate
the pre-charging of internal nodes. [1] A notable advantage
of this configuration compared to the Current level sense
amplifiers is its reduced transistor count, leading to quicker
access times and a more compact footprint. [2]

VSL OOR ONOR OAND ONAND

VLL 0 1 0 1
VLH 1 0 0 1
VHL 1 0 0 1
VHH 1 0 1 0

TABLE II: Truth Table for the VLSA

Fig. 5: Timing Diagram for the Sense Amplifier; The figure
showcases the different levels of discharge on RBL based on
inputs and the relative timing wrt reference and sense signals.

Fig. 6: 8T 64x1 SRAM Operation

IV. IN-MEMORY COMPUTING

CiM’s computational outputs seamlessly intertwine with
near-array or peripheral Compute Modules (CMs). This in-
tegration allows for the derivation of sum and carry-out bits
for each column, facilitating a coherent and efficient data flow
within the memory hierarchy.

The Compute Module manages the propagation of carry-bits
from the least significant bits (LSB) to the most important bits
(MSB), intricately imitating the well-established procedure
in standard adders. This efficient convey spread instrument
guarantees the exact calculation of two numbers’ amounts,
keeping consistent with traditional number-crunching tasks.
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Fig. 7: Computing an In-memory addition

A. Single-Cycle Computations vs. Conventional Approaches
CiM’s distinctive capability for executing computations

within a single cycle starkly contrasts conventional method-
ologies, where the standard approach typically demands two
cycles for reading and subsequent bitwise operations. This
efficiency gain positions CiM as a promising paradigm for
accelerated data processing.

V. LAYOUT

A. 8T SRAM - Thin cell
The 8T SRAM cell was designed using the thin cell layout

and is presented in Figure 8.

Fig. 8: Layout of the 8T SRAM cell

B. Sense amplifier and Compute module
CMOS design methodology was used for the VLSA and

1-bit full adder. VLSA and Adder layouts are presented in
Figure 9 and Figure 10, respectively.

Fig. 9: Layout of the Voltage-based Sense Amplifier

Fig. 10: Layout of the Compute Module

C. Design Strategy
The memory cell architecture demonstrates a highly re-

peatable design paradigm, facilitating rapid scalability. The
foundational unit consists of an 8T SRAM cell. Concurrently,
cells corresponding to logical operations, namely AND, XOR,
OR, and NOR gates, were designed. Notably, the AND, OR,
and NOR gates share a standard height, while the XOR gate
exhibits double the size.

Leveraging these fundamental logic cells, an Adder was
designed and seamlessly integrated into a vertical column com-
prising 64 8T SRAM cells, accompanied by 2 Voltage Level
Sense Amplifiers VLSA and a precharge cell. The routing of
the Read Bitline RBL, Write Bitline (WBL), and Write Bitline
Bar WBLB occurred in the vertical direction, while the Read
Wordline RWL and Write Wordline WWL were horizontally
positioned. The column’s design incorporated tolerances and
placement considerations, ensuring compatibility within an
8x64 cell without necessitating additional routing.

Eight such blocks were serially arranged to achieve the tar-
geted 64x64 configuration, and the Carry-In (CIN) and Carry-
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Out (CO) signals were chained among the cells, completing
the overall design.

This design methodology, characterized by its systematic
modular approach, enabled the expeditious realization of a
4-kilobyte (KB) memory within the stipulated timeframe for
the project. However, it is imperative to acknowledge that the
current design may not optimize contact-sharing efficiency, a
topic explored more comprehensively in Section VII of this
academic paper.

D. Routing Strategy
In the Layout of our integrated circuit (IC), the strategic

utilization of metal layers is a crucial consideration, empha-
sizing the concept of metal layer directionality. Notably, Metal
1 (M1), Metal 2 (M2), and Metal 3 (M3) are employed
for signal routing, with M2 primarily facilitating horizontal
interconnects and M3 dedicated to vertical routing. This delib-
erate directionality streamlines the manufacturing process and
ensures consistency while capitalizing on optimized resistance
and capacitance for efficient signal propagation. Moreover,
M4 is exclusively designated for establishing the VDD grid,
contributing to robust power distribution. Concurrently, M5
is allocated explicitly for constructing the GND grid, thereby
augmenting the overall reliability and functionality of our IC
design.

VI. RESULTS

Our circuit successfully implements a 64x64 array of 8T
SRAM cells capable of parallel performing in-memory addi-
tion of eight 8-bit words.

A. Area
The computed area of the 64x64 SRAM array with the

Compute module is dictated by specific metrics, with a
measured length of 147.84 µm and a corresponding height
of 77.365 µm. The resultant area is measured at 11,439.24
µm2 units, constituting 90.1% of the design. These metrics
serve as quantitative indicators, providing a comprehensive
understanding of the physical dimensions of our IC. The
Compute module comprises the VLSA adder and 8.9443%,
whereas the precharge circuit takes up 0.885% of the total
area. Table III presents the overall breakdown of the measured
area.

Module Length (µm) Height (µm) Area (µm2) Total (%)
Pre-charge 147.84 0.685 101.27 0.885

Compute Module 147.84 6.92 1023.05 8.943
SRAM Array 147.84 69.77 10314.92 90.172

Total 147.84 77.365 11,439.24 100.00

TABLE III: Module Dimensions and Area Allocation

B. Write Latency
In our design, the efficiency of memory operations hinges

on the careful consideration of write latency. Specifically, our
system achieves a write latency of 27 ps following the Write
Word Line (WWL) assertion. This duration represents the time

required for a successful write operation. The write latency
is measured as the duration after which Q and QB reach
stability on the assertion of WWL. Figure 11 presents the
timing diagram for writing data.

Fig. 11: Timing Diagram for the Write Operation

C. Read Latency
Ensuring the accuracy of identified values in our computa-

tional framework requires carefully deploying the sense signal
at approximately 75 ps [Fig. 12] after initiating the Read
Word Line (RWL). This timing is critical for the VLSA to
latch and propagate the computed logic between 2-word lines
correctly. When evaluating the overall latency for worst-case
scenarios, the upper cells (WWL0 and WWL1) of the last
column (RBL< 0:7 >) are engaged in full ripple addition,
specifically addressing the operation 0xFF + 0x00 with a
Carry-in (Cin) as 1. The latency for obtaining the SUM is
determined to be 823 ps, while the Carry-out (Cout) latency is
measured as 886 ps.

D. Energy Consumption
Memories typically consist of four major energy consump-

tions: Energy associated with reads (RBL), Energy associated
with writes (WWL), Energy associated with peripheral cir-
cuits, and Energy associated with internal capacitors.

Energy Single-bit 64-bits
Write Energy 110 pJ 7.6 nJ
Read Energy 210.8 pJ 13.491 nJ

TABLE IV: Energy Consumption

In our analysis, we present the Energy associated with
WWL by integrating the product of the current on each word
line with VDD while storing 1 to all 64 lines. We also present
the total computed Energy calculated from the assertion of
RWL till the Sum is obtained. This is calculated by adding the
individual energies consumed by the VLSA. Energy of each
VLSA is computed by integrating the product of the Current
at REF with VDD when 0xFF is added with 0x00 for all eight
words. The results are tabulated below in Table IV.

E. DRC and LVS Checks
The execution of our design is characterized by a successful

completion of the Layout versus Schematic (LVS) and Design
Rule Check (DRC) processes.
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Fig. 12: Timing Diagram for the Read Operation

Fig. 13: Result of Design Rule Checks (DRC)

Fig. 14: Result of Layout v/s Schematic (LVS) checks

VII. PARALLEL COMPUTE

We successfully executed computations involving eight 8-bit
words within a single cycle by harnessing the parallel process-
ing capabilities inherent in the Computing-in-Memory (CiM)
architecture. The array structure, with each row containing
eight words and a compute module for each column. 64 bits
of data can be added parallelly.

This functionality was achieved by ensuring the width of the
compute module was less than the width of a single 8T SRAM
cell, which allowed each column to have its own Compute
module.

Fig. 15: Parallel Addition of 8 8-bit Words from Two Rows
in a Single Cycle

VIII. OPTIMIZATIONS

A. Contact sharing

In CMOS layout design, using 8T SRAM cells with a thin
cell layout is a promising approach to enhance connectiv-
ity and minimize silicon footprint. The unique characteristic
of the 8T SRAM cell design allows for efficient vertical
contact sharing between the Read Word Line (RWL), Write
Bit Line (WBL), and Write Bit Line Bar (WBLB), leading
to a more compact arrangement. Additionally, the thin cell
layout facilitates row-wise column sharing between the RWL
and Write Word Line (WWL), further optimizing the use of
available space. This innovative configuration streamlines the
physical Layout of SRAM cells and contributes to improved
performance and reduced power consumption, making it a
valuable design choice in advanced CMOS integrated circuits.

Unfortunately, during the project, we had to overcome
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Fig. 16: (a) Von Neumann architecture - CPU and memory are distinct, linked by a bus, (b) Near-memory computing - integrates
nonvolatile memory on the same silicon as the CPU, enhancing bandwidth, and (c) In-memory computing - SRAM-based,
with computation directly within the memory array.

numerous challenges to put the thin cell structure with vertical
contact sharing into practice. The design process was hindered
even with its potential advantages due to the discovery of nu-
merous N-Well (NTAP) and P-Well TAP (PTAP) Design Rule
Check (DRC) problems. Due to the project’s time constraints,
fixing these problems would require a significant redesign,
impairing the project’s ability to meet its deadlines. As a
result, we had to defer the implementation of row-wise column
sharing and vertical contact sharing in our 64x64 8T SRAM
cells.

B. Additional Margins for latency’s accounting for Non-
ideal Drive signals

In our investigation, we assumed that all input signals were
ideal, with a rise and fall period of 10 ps. However, real-world
signals exhibit inherent nonidealities. It becomes essential to
consider variations in the rise and fall durations to guarantee
the effective functioning of the SRAM array, especially for
crucial signals like the Sense Enable (SEN), ensuring that the
sensing amplifier latches onto the correct values.

To simulate nonidealities, buffering all input signals with
inverters could introduce delays. While these tests are crucial
for production projects, they were beyond the scope of this
particular project.

IX. COMPARISON WITH NEAR-MEMORY COMPUTING
AND VON-NEUMANN ARCHITECTURE

In the von Neumann architecture, a foundational computing
model, denoted as (Fig. 16 (a)), extensive data is stored within
a memory unit intricately linked to the computational unit
through a data bus. The persistent data flow between these pro-
cessing and memory components is a predominant bottleneck,
characterized by constrained bandwidth, prolonged latency,
sequential data processing, and elevated energy consumption.
[3] [4]

In contrast, near-memory computing (Fig. 16 (b)) represents
a departure from the von Neumann model by integrating
processing elements closely with memory units [5]. This
architectural approach aims to mitigate data transfer overhead
by enabling parallelism through the execution of computations
in proximity to where data is stored. Near-memory computing

is designed to enhance energy efficiency, reduce latency, and
leverage data-centric computation models, offering advantages
over traditional von Neumann architectures, especially in
scenarios with high memory access patterns. [5]

In-memory computing, another innovative paradigm, takes
a step further by performing computations directly within
the memory space. This eliminates the need for frequent
data movement, a characteristic challenge of von Neumann
architectures. In-memory computing optimizes performance
by capitalizing on high-speed memory access, which is partic-
ularly beneficial for data-intensive tasks. It exploits parallelism
within the memory architecture, significantly improving over-
all throughput and energy efficiency.

Distinguishing these architectures lies in their data move-
ment, parallelism, energy efficiency, and latency approaches.
With their sequential nature, Von Neumann architectures often
face challenges related to data transfer delays and energy
inefficiencies. Near-memory computing addresses these issues
by minimizing data movement and introducing parallelism,
enhancing energy efficiency and latency. [6] However, with
its direct computation within the memory space, in-memory
computing surpasses optimal solutions for data-centric com-
puting, large-scale analytics, and memory-bound applications.

Metrics such as throughput improvement and energy ef-
ficiency can be used to demonstrate the superiority of in-
memory computing. Studies have shown a significant increase
in throughput, with values reaching up to 3 times faster
than traditional von Neumann architectures. Energy efficiency
metrics also favor in-memory computing, with reductions in
power consumption by up to 20% compared to conventional
models. [7] These metrics highlight the superior performance
of in-memory computing, making it a compelling choice for
modern computational needs.

X. CONCLUSION

In conclusion, our research has successfully navigated the
intricate landscape of Computing-in-Memory (CiM) architec-
tures, emphasizing the transformative potential of integrating
computation capabilities directly within the memory subsys-
tem. The optimization of 8T-SRAM cells for parallel 8-bit
word addition not only addresses the persistent challenges
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of data transfer bottlenecks in traditional von Neumann ar-
chitectures but also paves the way for more efficient and
performant computing solutions. Our design, implementation,
and evaluation phases have demonstrated the operational ef-
ficacy of the proposed CiM architecture, providing valuable
insights into the delicate balance between memory efficiency
and computational speed.

While our work showcases promising results in terms of
parallel computing capabilities and operational efficacy, it is
important to acknowledge the challenges we encountered,
such as those related to thin cell structure with vertical
contact sharing. Despite these hurdles, our research contributes
valuable insights to the evolving landscape of in-memory
computing, providing a foundation for future advancements in
efficient and performant computing architectures, particularly
in the context of 8-bit word addition operations. As technology
advances, the exploration of in-memory computing models
becomes increasingly crucial for overcoming the limitations
of traditional architectures and unlocking new possibilities for
high-throughput computing scenarios.

XI. CONTRIBUTION OF EACH TEAM MEMBER

A. Shalvi
• 8T SRAM Schematic.
• One word (64x8 array with CiM) and Full design (64x64

Array with CiM) Schematic.
• Logic Gates and Adder Layout.
• Final Design Layout.
• Adder functional simulation and 8T SRAM functional

simulation.

B. Yatharth Agarwal
• Adder and VLSA Schematic.
• Single column (64x1 array with CiM) Schematic.
• VLSA and 8T SRAM Layout.
• Single column Layout and One word (64x8 array with

CiM) Layout.
• VLSA functional Simulation and Single column func-

tional simulation.
• Full design (64x64 Array with CiM) Post-extraction

simulation.
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APPENDIX

Fig. 17: The arrangement consists of three 8T SRAM cells
organized in two columns, accompanied by the two Voltage
Latch Sense Amplifier (VLSA) and Compute Module for each
column.
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